M. SC. (APPLIED STATISTICS) (MSCAST)

Term-End Examination

June, 2025

MST-015: INTRODUCTION TO R SOFTWARE

Time: 2 Hours Maximum Marks: 25

Note: (i) Question No. 1 is compulsory.

- (ii) Attempt any **two** questions out of the remaining Question Nos. 2 to 4.
- (iii) Use of scientific calculator (non-programmable) is allowed.
- (iv) Symbols have their usual meanings.
- 1. Answer the following:

 $5 \times 1 = 5$

(a) Write a command to get help on the **for** reserved word.

- (b) Differentiate between the use of the sep and collapse arguments of the paste() function.
- (c) Write the output of the following statement:

- (d) Which of the following user defined function names is inappropriate and why?
 - (i) matrix
 - (ii) abs
- (e) Write an assignment statement equivalent to the following equation in ${\bf R}$:

Area =
$$2\pi r^2 + 2\pi rh$$

2. (a) Write R code to create the graph of the following function:

$$f(x) = |x|, \qquad -5 \le x \le 5$$

(b) Consider the following data: 3

37, NA, 30, 49, 110, 96, NA,

23, 21, 7, 21, 9, NA, 37, 30, 30, 21

Write R commands to perform the following tasks:

- (i) Remove NA's from this data and save it under the name **Air**.
- (ii) Create a histogram by specifying the colors for filling bars.
- (iii) Extract the frequency distribution corresponding to the histogram.
- (c) Write an **if-else** statement to compute the value of *y*, where:

$$y = \begin{cases} 4x^3 \text{ and increase } x \text{ by } \frac{1}{2} &, & \text{if } x \le 4 \\ 4(x-1)^2 \text{ and decrease } x \text{ by } \frac{1}{2}, & \text{if } x > 4 \end{cases}.$$

3. (a) Write R commands to create a function to compute the variance of the following discrete frequency distribution:

$$x_i \mid f_i, \quad i = 1, 2, 3, 4$$

(b) Consider the following height and weight data:

Height (in inches)	Weight (lbs)	
57	113	
58	116	
59	118	
60	121	
61	124	
62	127	
63	130	
64	132	
65	135	
66	138	

Create a data frame named **DF** of the data and write R commands to do the following tasks:

- (i) Extract the first 9 rows of the data frame and assign it under the name **women**.
- (ii) Compute the Karl Pearson's correlation coefficient between the columns of **women**.
- (iii) Create scatter plot of the variables of **DF** in a single plot.
- (c) Write step-by-step execution of the following code:

m <- 6

while (m > 3) {

 $n \leftarrow m \%/\% 2$

if (n==0) m \leftarrow m*5 else m < - m - 1

}

Cat ("n=", n, "m=", m)

4. (a) Consider the following three matrices: 4

 $A \leftarrow \text{matrix} (1:4, \text{nrow} = 2)$

 $B \leftarrow \text{matrix} (\text{rep}(1, 4), \text{ncol} = 2)$

 $C \leftarrow \text{matrix} (5:8, \text{nrow} = 2,$

ncol = 2)

Create the matrices and write the outputs of the following commands:

- (i) A C + B % * % C
- (ii) cbind (A, B)
- (iii) diag(C)
- (iv) **A[1,]**
- (b) Write R commands to create a .csv file consisting of the following data: 4

Air. Flow	Water. Temp	Acid. Conc.	Stack. loss
80	26	90	42
80	24	89	37
75	22	91	37
62	21	88	28
62	23	94	18

If the data is saved in SL.csv file, then read the data and name it as **SLOSS**. Also, write R commands to:

(i) Name the rows as Row1, Row2, Row3, Row4 and Row5 and

columns as Col1, Col2, Col3 and Col4.

- (ii) Compute the row means and column sums of the data frame.
- (iii) Sort SLOSS according to the Col2 of it.
- (c) Write R commands to get the following outputs:
 - (i) a##1\$, b##3\$, c##5\$
 - (ii) A:1, B:2, C:3, D:4

 $\times \times \times \times \times$