POST GRADUATE DIPLOMA IN APPLIED STATISTICS (PGDAST)

Term-End Examination June, 2025

MSTE-004: BIOSTATISTICS—II

Time: 3 Hours Maximum Marks: 50

- Note: (i) Question No. 1 is compulsory.
 - (ii) Attempt any four questions from the remaining Question Nos. 2 to 7.
 - (iii) Use of scientific calculator (non-programmable) is allowed.
 - (iv) Use of Formulae and Statistical Tables Booklet for PGDAST is allowed.
 - (v) Symbols have their usual meanings.
- 1. State whether the following statements are True or False. Give reasons in support of your answers: $5\times2=10$
 - (a) Both samples should be independent and random to apply McNemar's test.

- (b) For a regression model Y = 2.5 + 0.15X, 95% confidence interval for the slope is (0.0386, 0.2614) when n = 12 and $SE(\hat{\beta}_1) = 0.05$.
- (c) If full and null log-likelihood functions of a logistic model are -60 and -62.5, the McFadden pseudo R^2 will be 0.04.
- (d) The log-rank test is applied to compare the hazard functions.
- (e) If relative risk for a clinical trial is 35%, the relative risk reduction will be 65%.
- 2. (a) The following data show the observations of two doctors who examined 350 patients:

Doctor I	Doctor II	Frequency
Y	Y	94
Y	Y	22
Y	N	7
Y	N	88
N	Y	37
N	Y	24
N	N	4
N	N	74

where Y represents presence and N represents absence of a disease. Calculate the value of Kappa statistics and its 95% confidence interval.

- (b) Differentiate between the sensitivity and specificity of a diagnostic test. 2
- 3. The Systolic Blood Pressure (SBP), age (in years) and weight (in kgs) of 12 persons are given in the following table:

S. No.	SBP	Age	Weight
1	120	34	70
2	115	34	50
3	100	29	70
4	145	38	90
5	135	36	63
6	160	42	84
7	170	40	60
8	140	37	80
9	160	38	81
10	185	41	78
11	200	42	66
12	170	40	72

- (i) Fit the multiple regression model of SBP on age and weight.
- (ii) Compute the predicted values of SBP and residuals (*ri*) for all the given observations.

(iii) Verify that
$$\sum_{i=1}^{12} r_i = 0$$
.

4. For the following case-control study of lung cancer and smoking status, fit a logistic model:

	Lung Cancer (Case)	No. Lung Cancer (Control)
Smoker	452	215
Non-smoker	548	785
Total	1000	1000

Also obtain the log-odds and odds ratio with the fitted logistic model.

5. The survival data of a randomized controlled trial corresponding to two treatment groups are given as follows:

	Survival time (in months)
Treatment 1	3, 4, 4 ⁺ , 6, 7, 9, 9 ⁺ , 11, 12, 14, 16, 18, 18, 20 ⁺ , 20 ⁺
Treatment 2	5, 7, 8, 10 ⁺ , 12, 14, 14 ⁺ , 17, 19, 20, 20 ⁺ , 21, 22 ⁺

Test whether there is a significant difference between the survival times of both treatments at 5% level of significance. 10

- 6. (a) Describe survival function with example. 5
 - (b) Differentiate between Chi-square test and McNemar's test.
- 7. (a) Differentiate between coefficient of determination and adjusted coefficient of determination.
 - (b) Explain the following in brief: 5
 - (i) Probit model
 - (ii) Complementary log-log model

 $\times \times \times \times \times$