M. SC. (APPLIED STATISTICS) (MSCAST)

Term-End Examination June, 2025

MSTE-011: OPERATIONS RESEARCH

Time: 3 Hours Maximum Marks: 50

Note: Question No. 1 is compulsory. Attempt any four questions from the remaining question nos. 2 to 6. Use of scientific (non-programmable) calculator is allowed. Symbols have their usual meanings.

- 1. State whether the following statements are True or False. Give reasons in support of your answers: $5\times2=10$
 - (a) The coefficient of slack/surplus variables is non-zero in the objective function.

- (b) Dual simplex method is not applicable to LPP, if initial basic feasible solution is not optimum.
- (c) Allocation to dummy destination represents the surplus at the supply point.
- (d) The optimum sequence is one where jobs are processed on first-come-first-served basis.
- (e) Inventory cycle is the time period occurring between successive procurement system (actions).
- 2. (a) Write the dual of the following LPP: 5
 Minimize:

$$Z = 4x_1 + 6x_2 + 18x_3$$

subject to the constraints:

$$x_1 + 3x_2 \ge 3$$

$$x_2 + 2x_2 \ge 5$$

and $x_j \ge 0 \ (j = 1, 2, 3)$

(b) Solve the following transportation problem by Vogel's approximation method:

Course		Des	tina		Arrailabilitre	
Source	1	2	3	4		Availability
1	21	16	25	13	11	
2	17	18	14	13 23 41	13	
3	32	27	18	41	19	
	6	10	12	15	43	

3. (a) Solve the following assignment problem which minimizes the total men hours: 5

Men \mathbf{C} Α В D 10 25 15 20 1 2 | 15 | 30 | 5 15 Jobs 35 20 12 24 4 $17 \ 25$ 24 20

(b) Use arithmetic method to solve the following (3×3) game: 5

$$\begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$

4. (a) We have five jobs, each of which must go through the two machines A and B in the order A → B. Processing times in hours are given in the table:

Job (i)	1	2	3	4	5
Machine A (A _i)	5	1	9	3	10
Machine B (B _i)	2	6	7	8	4

Determine a sequence for five jobs that will minimize the elapsed time.

(b) The cost of a machine is ₹ 6,100 and its scrap value is ₹ 100. The maintenance costs found from past experience are as follows:

Year	Maintenance Cost (in ₹)
1	100
2	250
3	400
4	600
5	900
6	1,200
7	1,600
8	2,000

When should the machine be replaced?

- In a super market, the average arrival 5. (a) rate of the consumers is 5 every 30 minutes. The average time it takes to list and calculate the consumer's the cash desk purchases at 4.5 and this time is minutes. exponentially distributed. 5
 - (i) How long will the customer expect to wait for service at the cash desk?
 - (ii) What is the chance that the queue length will exceed 5?
 - (iii) What is the probability that the cashier is working?
 - (b) The demand for a particular item is ₹ 18,000 units per year. The holding cost per unit is ₹ 1.20 year and cost of one procurement is ₹ 400. No shortage are allowed and the replacement rate is instantaneous.

Determine:

- (i) Optimum order quantity
- (ii) Number of orders per year
- (iii) Time between orders
- (iv) Total cost per year, when the cost of one unit is Re. 1.
- 6. Use simplex method to:

10

Maximize:

$$Z = 3x_1 + 5x_2$$

subject to the constraints:

$$3x_1 + 2x_2 \le 18$$

$$0 \le x_1 \le 4$$

$$0 \le x_2 \le 6.$$

$$\times \times \times \times \times$$