Ph. D. (COMPUTER SCIENCE) (PHDCS)

Term-End Examination June, 2025

RCSE-001: DATA MINING

Time: 3 Hours Maximum Marks: 100

Note: (i) Question No. 1 is compulsory and carries 40 marks.

- (ii) Answer any **three** questions from the rest.
- (iii) Use of scientific calculator is allowed.
- (a) Explain Data Mining functionalities
 with examples.
 - (b) How is data warehouse different from database? Also, mention various characteristics of a data warehouse. 5

(c)	Consider that minimum and maximum					
	value of an attribute age are 13 and					
	50 respectively. Use min-max					
	normalization to transform the age					
	values 35 for, where the range is					
	[0.0, 1.0].					

- (d) What is support and confidence in Association Rule Mining? Explain with an example.
- (e) With the help of an example, explain star and snowflake schemas. 5
- (f) What is over-fitting and how can it be avoided? Explain. 5
- (g) Describe how the first level of itemsetsis generated in Apriori algorithm.
- (h) Define the Percentage Split approach for training and testing a model.Discuss its advantages and disadvantages.
- (a) Describe the challenges in data miningwith respect to performance issues.

- (b) What is the difference between the *three* main types of data warehouse usage: Information processing, Analytical processing and Data mining? Also, discuss the motivation behind OLAP mining.
- (c) Compare enterprise warehouse, datamart and cloud warehouse with thehelp of suitable examples.
- 3. (a) Given the following data (in increasing order) for an attribute 'age':13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25,

25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70.

Apply bin means, bin median and bin boundaries to smooth these data using a bin depth of 3. Illustrate your steps. 8

(b) Explain with the help of an example where data mining is crucial to the success of a business. What data mining functions does this business need? Can

they be performed alternatively by data query processing or simple statistical analysis?

4. A database has five transactions. Let minsupp=60% and min-conf = 80%:

TID	Items-bought
T ₁₀₀	{K, A, D, B}
T ₂₀₀	{D, A, C, E, B}
T ₃₀₀	{A, C, B, E}
T_{400}	{B, D, E}
T ₅₀₀	{A, D, B}

- (a) Find all frequent itemsets without candidate generation. 10
- (b) List all of the strong association rules (with min_supp and min_conf.) 10
- 5. (a) The following table consists of training data from an employee database. The data have been generalized. For a given row entry, count represents the number

of data types having the values for department, status, age and salary given below. Let salary be the class level attribute:

Department	Status	Age	Salary (₹)	Count
Sales	Senior	31 35	46k 50k	30
Sales	Junior	26 30	26k 30k	40
Sales	Junior	31 35	31k 35k	40
System	Junior	21 25	46k 50k	20
System	Senior	31 35	66k 70k	5
System	Junior	26 30	46k 50k	3
System	Senior	41 45	66k 70k	3
Marketing	Senior	31 40	46k 50k	10
Marketing	Junior	31 35	41k 45k	4
Secretary	Senior	46 50	36k 40k	4
Secretary	Junior	26 30	26k 30k	6

Given a data sample with the values X = {"System", "Junior", "26 30"} for the attributes department, status and age respectively. What would be a Naive-Bayesian classification of the salary for the sample? Illustrate your steps.

 $\times \times \times \times \times$